geo3d.pdal.filters ================== .. py:module:: geo3d.pdal.filters Attributes ---------- .. autoapisummary:: geo3d.pdal.filters.FILTER_TYPES Functions --------- .. autoapisummary:: geo3d.pdal.filters.range geo3d.pdal.filters.cluster geo3d.pdal.filters.assign geo3d.pdal.filters.merge geo3d.pdal.filters.stats geo3d.pdal.filters.expression geo3d.pdal.filters.crop geo3d.pdal.filters.info geo3d.pdal.filters.nndistance geo3d.pdal.filters.outlier geo3d.pdal.filters.groupby Module Contents --------------- .. py:data:: FILTER_TYPES .. py:function:: range(limits: str) -> Dict[str, str] Create the `filters.range`'s stage. :param limits: A list of limits as defined in pdal. 'Z[0:100],Classification[2:2]' for example. :type limits: str :returns: The Filter's stage dictionary. :rtype: Dict .. py:function:: cluster(min_points: int, tolerance: float) -> Dict[str, str] Create the `filters.cluster`'s stage. :param min_points: The minimum size of a cluster. :type min_points: int :param tolerance: The maximum distance to a cluster. :type tolerance: float :returns: The Filter's stage dictionary. :rtype: dict .. py:function:: assign(value: str) -> Dict[str, str] Create `filters.assign`'s stage. :param value: A list of assignment expressions. See pdal documentation. :type value: str .. rubric:: Examples value='Dimension = ValueExpression [WHERE ConditionalExpression]'. :returns: The Filter's stage dictionary. :rtype: dict .. py:function:: merge() -> Dict Create `filters.merge`'s stage. :returns: The Filter's stage dictionary. :rtype: dict .. py:function:: stats(dimensions: str, enumerate: Optional[str] = None, count: Optional[str] = None) -> Dict[str, Any] Create `filters.stats`'s stage. :param dimensions: The dimensions on whose to compute statistics. :type dimensions: str :param enumerate: The dimensions whose values should be enumerated. :type enumerate: str :param count: Provide the count of the number of points of each enumerated category. :type count: str :returns: The Stats' stage dictionary. :rtype: dict .. py:function:: expression(expression: str) -> Dict[str, str] Create `filters.expression`'s stage. :param expression: An expression that limits points passed to a filter. For example, 'Classification == 3'. :type expression: str :returns: The Expression' stage dictionary. :rtype: dict .. py:function:: crop(bounds: str) -> Dict[str, str] Create `filters.crop`'s stage. :param bounds: The bounding box to crop on. It can be in the format '([xmin, xmax], [ymin, ymax])'. :type bounds: str :returns: The Crop's stage dictionary. :rtype: dict .. py:function:: info() -> Dict Create `filters.info`'s stage. :returns: the Info's stage dictionary. :rtype: dict .. py:function:: nndistance(mode: str, k: int) -> Dict[str, Any] Create `filters.nndistance`'s stage. :param mode: The mode of operation. :type mode: str :param k: The number of nearest neighbors. :type k: int :returns: the nndistance's stage dictionary. :rtype: dict .. py:function:: outlier(classification: int, method: str, min_k: int, radius: float, mean_k: int, multiplier: float) -> Dict[str, Any] Create `filters.outlier`'s stage. :param classification: The class value to assign to outliers. :type classification: int :param method: The outlier removal method. 'statistical' or 'radius'. :type method: str :param min_k: Minimum number of neighbors in radius. Applicable to radius method only. :type min_k: int :param radius: The value of radius of the ball of neighbors. :type radius: float :param mean_k: The number of k nearest neighbors. Applicable to statistical method only. :type mean_k: int :param multiplier: The multiplier to use in computing the threshold. :type multiplier: float :returns: the outlier's stage dictionary. :rtype: dict .. py:function:: groupby(dimension: str) -> Dict[str, Any] Create `filters.groupby`'s stage. :param dimension: The dimension to be used in grouping the data. :type dimension: str :returns: the Info's stage dictionary. :rtype: dict