azure_ml_sdk.services.deployment.endpoint¶
Classes¶
Class for defining deployments to be used in online endpoints. |
|
Class for creating or updating online endpoints on Azure Machine Learning. |
|
Class for managing online endpoints on Azure Machine Learning. |
Module Contents¶
- class azure_ml_sdk.services.deployment.endpoint.OnlineDeployment(ml_client: azure.ai.ml.MLClient, name: str, endpoint_name: str, config: dict | None = {})¶
Class for defining deployments to be used in online endpoints.
- ml_client¶
- name¶
- endpoint_name¶
- property status: str | None¶
Returns the provisioning state of an online deployment.
- property id: str | None¶
Returns the id of the online deployment.
- get() azure.ai.ml.entities.ManagedOnlineDeployment | None¶
Return the online deployment object.
- Raises:
ValueError – If the online deployment is not found in the online endpoint.
- Returns:
The online deployment object.
- Return type:
Optional[ManagedOnlineDeployment]
- get_logs(lines: int = 100) str¶
Retrieve the logs from the online deployment.
- Parameters:
lines (int) – The maximum number of lines to tail. Defaults to 100 lines.
- Returns:
the logs of the online deployment.
- Return type:
str
- set(model: str | None = None, environment: str | None = None, scoring_folder: str | None = None, scoring_script: str | None = None, instance_type: str | None = 'STANDARD_E4S_V3', instance_count: int | None = 1) None¶
Configure the online deployment.
- Parameters:
model (str) – The name of the registered model in the workspace.
environment (str) – The name of the registered environment in the workspace.
scoring_folder (str) – The path to the folder containing the scoring script.
scoring_script (str) – The name of the scroring script (.py).
instance_type (str) – The name name of the compute instance.
instance_count (int) – The number of instances to deploy. Defaults to 1.
- class azure_ml_sdk.services.deployment.endpoint.OnlineEndpoint(ml_client: azure.ai.ml.MLClient, name: str)¶
Class for creating or updating online endpoints on Azure Machine Learning.
- ml_client¶
- name¶
- property status: str | None¶
Return the provisioning state of the online endpoint.
- property scoring_uri: str | None¶
Return the scoring uri of the online endpoint.
- property keys: str | None¶
Return the authentication key of the online endpoint.
- property id: str | None¶
Return the id of the online endpoint.
- get() azure.ai.ml.entities.ManagedOnlineEndpoint | None¶
_summary_.
- Raises:
ResourceNotFoundError – _description_
- Returns:
_description_
- Return type:
Optional[ManagedOnlineEndpoint]
- invoke(deployment_name: str, request_file: str) None¶
Invoke the online endpoint with a payload in a json request file.
- Parameters:
deployment_name (str) – The name of the online deployment to invoke.
request_file (str) – The path to a json file containing the request.
- list_deployments() List[str]¶
List all deployments of the online endpoint.
- Returns:
List of the names of the deployments of the online endpoint.
- Return type:
List[str]
- get_deployment(deployment_name: str) OnlineDeployment | None¶
Get a deployment of the online endpoint.
- Raises:
ValueError – If the deployment is not found in the online endpoint.
- Parameters:
deployment_name (str) – The name of the deployment.
- Returns:
The online deployment, if it exists.
- Return type:
Optional[OnlineDeployment]
- create_or_update_deployment(deployment_name: str, config: dict | None = {}) OnlineDeployment¶
Create a deployment in the online Endpoint.
- Parameters:
deployment_name (str) – The name of the deployment to create or update.
config (dict) – The dictionary containing the deployment configuration.
- Raises:
ResourceNotFoundError – if the endpoint is not found in the workspace.
- delete_deployment(deployment_name: str) None¶
Delete a deployment from an online endpoint.
- Parameters:
deployment_name (str) – The name of the deployment.
- Raises:
ValueError – If the deployment is not found in the online endpoint.
- class azure_ml_sdk.services.deployment.endpoint.OnlineEndpointManager(ml_client: azure.ai.ml.MLClient)¶
Class for managing online endpoints on Azure Machine Learning.
- ml_client¶
- list_endpoints() List[str]¶
List all online endpoints in the workspace.
- Returns:
A list of the names of the endpoints of the workspace.
- create_endpoint(endpoint_name: str, description: str, auth_mode: str = 'key') OnlineEndpoint¶
Create an online endpoint in the workspace.
- Parameters:
endpoint_name (str) – name of the endpoint.
description (str) – description of the endpoint.
auth_mode (str) – Authentication mode. Possible values: ‘aml_token’, ‘key’. Defaults to ‘key’.
- delete_endpoint(endpoint_name: str) None¶
Delete an online endpoint in the workspace.
- Parameters:
endpoint_name (str) – name of the endpoint.
- get_endpoint(endpoint_name: str) OnlineEndpoint¶
Get an online endpoint (if deployed).
- Returns:
The online endpoint instance.
- Return type: