Index _ | A | B | C | D | E | F | G | H | I | J | L | M | N | O | P | R | S | T | U | V | W | X | Y _ __add__() (unet.postprocess.lines.Point method) __call__() (unet.trainer.trainer.EarlyStopper method) __getitem__() (unet.dataset.dataset.SegrailsDataset method) __iter__() (unet.postprocess.lines.Point method) __len__() (unet.dataset.dataset.SegrailsDataset method) __sub__() (unet.postprocess.lines.Point method) __truediv__() (unet.postprocess.lines.Point method) _load_checkpoint() (unet.trainer.trainer.Trainer method) _save_checkpoint() (unet.trainer.trainer.Trainer method) _unit_train() (unet.trainer.trainer.Trainer method) _validate() (unet.trainer.evaluator.Evaluator method) (unet.trainer.trainer.Trainer method) A angle() (unet.postprocess.lines.Line method) apply_mask() (in module unet.postprocess.images) area_max (unet.postprocess.processor.PostProcessor attribute) area_min (unet.postprocess.processor.PostProcessor attribute) attach() (unet.model.optimizers.Optimizer method) (unet.model.optimizers.Scheduler method) augmentations (unet.utils.augmentations.Transformations attribute) B BBox (class in unet.postprocess.lines) bgr2gray() (in module unet.postprocess.images) bgr2hsv() (in module unet.postprocess.images) bgr2rgb() (in module unet.postprocess.images) blur() (in module unet.postprocess.images) bottom_left (unet.postprocess.lines.BBox attribute) bottom_right (unet.postprocess.lines.BBox attribute) bounds() (unet.postprocess.lines.BBox method) box_mask() (in module unet.postprocess.images) box_splits (unet.postprocess.processor.PostProcessor attribute) C canny_edges() (in module unet.postprocess.images) canny_high_threshold (unet.postprocess.processor.PostProcessor attribute) canny_low_threshold (unet.postprocess.processor.PostProcessor attribute) center (unet.postprocess.lines.BBox attribute) center_array() (in module unet.postprocess.utils) center_box() (unet.postprocess.lines.Line method) center_track() (unet.postprocess.processor.PostProcessor static method) classes (unet.model.unet.Unet attribute) clean_data module compose() (unet.utils.augmentations.Transformations method) compute_metrics() (unet.model.metrics.Metrics method) compute_stats() (unet.model.metrics.Metrics method) convert_coco_to_mask() (in module unet.utils.labels) counter (unet.trainer.trainer.EarlyStopper attribute) create_mask() (in module unet.utils.labels) current_epoch (unet.trainer.trainer.Trainer attribute) D data_visualization module DATE_FORMAT (in module unet.utils.strings) deg2rad() (in module unet.postprocess.utils) device (unet.trainer.evaluator.Evaluator attribute) (unet.trainer.trainer.Trainer attribute) dict2print() (in module unet.utils.strings) dict2str() (in module unet.utils.strings) difference_filenames() (in module clean_data) dilate() (in module unet.postprocess.images) dilation_size (unet.postprocess.processor.PostProcessor attribute) distance_max (unet.postprocess.processor.PostProcessor attribute) distance_min (unet.postprocess.processor.PostProcessor attribute) E e (unet.postprocess.lines.Line attribute) early_stop (unet.trainer.trainer.EarlyStopper attribute) EarlyStopper (class in unet.trainer.trainer) ELEMENTS_PER_GRID (in module unet.utils.plots) encoder (unet.model.unet.Unet attribute) erode_dilate() (in module unet.postprocess.images) eval() (unet.trainer.evaluator.Evaluator method) eval_config (unet.trainer.evaluator.Evaluator attribute) (unet.trainer.trainer.Trainer attribute) Evaluator (class in unet.trainer.evaluator) F find_contours() (in module unet.postprocess.images) fit_box() (unet.postprocess.lines.Line method) fn (unet.model.metrics.Metrics attribute) forward() (unet.model.unet.Unet method) fp (unet.model.metrics.Metrics attribute) from_points() (unet.postprocess.lines.Line method) func() (unet.model.losses.Loss method) (unet.postprocess.lines.Line method) func_inv() (unet.postprocess.lines.Line method) G gamma (unet.model.optimizers.Scheduler attribute) geotransform2dict() (in module unet.postprocess.utils) get_logger() (in module unet.utils.strings) get_loss_fn() (unet.model.losses.Loss static method) get_random_color() (in module unet.postprocess.images) get_rows_cols() (in module unet.utils.plots) gray2rgb() (in module unet.postprocess.images) GRID_SUBPLOTS (in module unet.utils.plots), [1] grouped_split() (in module unet.utils.split) H h (unet.postprocess.lines.BBox attribute) highest_val_metric (unet.trainer.trainer.Trainer attribute) hough_lines_cv2() (in module unet.postprocess.images) hough_lines_skimage() (in module unet.postprocess.images) hough_max_gap (unet.postprocess.processor.PostProcessor attribute) hough_min_line (unet.postprocess.processor.PostProcessor attribute) hough_threshold (unet.postprocess.processor.PostProcessor attribute) hue_mask() (in module unet.postprocess.images) I image_masks_fusion() (in module unet.utils.plots) image_size (unet.utils.augmentations.Transformations attribute) images_dir (unet.dataset.dataset.SegrailsDataset attribute) images_list (unet.dataset.dataset.SegrailsDataset attribute) in_range() (in module unet.postprocess.utils) inference module inference() (in module unet.detection.tools) intercept (unet.postprocess.lines.Line attribute) iou_score() (in module unet.postprocess.utils) iou_threshold (unet.postprocess.processor.PostProcessor attribute) J jet (unet.postprocess.processor.PostProcessor attribute) L Line (class in unet.postprocess.lines) list_dir() (in module unet.utils.io) list_filenames() (in module clean_data) load() (unet.model.unet.Unet method) log_dir (unet.trainer.evaluator.Evaluator attribute) logger (unet.trainer.evaluator.Evaluator attribute) (unet.trainer.trainer.Trainer attribute) LOGGING_FORMAT (in module unet.utils.strings) Loss (class in unet.model.losses) loss_fn (unet.model.losses.Loss attribute) (unet.trainer.trainer.Trainer attribute) LOSS_FUNCTIONS (in module unet.model.losses) lr (unet.model.optimizers.Optimizer attribute) M main() (in module clean_data) (in module data_visualization) (in module inference) mask2box() (in module unet.postprocess.images) masks_dir (unet.dataset.dataset.SegrailsDataset attribute) masks_list (unet.dataset.dataset.SegrailsDataset attribute) max_scale() (in module unet.postprocess.utils) mean (unet.model.unet.Unet attribute) method (unet.model.optimizers.Optimizer attribute) (unet.model.optimizers.Scheduler attribute) metric_dict (unet.model.metrics.Metrics attribute) metric_func() (unet.model.metrics.Metrics static method) metric_list (unet.model.metrics.Metrics attribute) Metrics (class in unet.model.metrics) middle() (unet.postprocess.lines.Point method) middle_() (unet.postprocess.lines.Point static method) min_delta (unet.trainer.trainer.EarlyStopper attribute) min_validation_loss (unet.trainer.trainer.EarlyStopper attribute) minmax_scale() (in module unet.postprocess.utils) model (unet.model.unet.Unet attribute) (unet.trainer.evaluator.Evaluator attribute) (unet.trainer.trainer.Trainer attribute) module clean_data data_visualization inference unet unet.dataset unet.dataset.dataset unet.detection unet.detection.tools unet.model unet.model.losses unet.model.metrics unet.model.optimizers unet.model.unet unet.postprocess unet.postprocess.images unet.postprocess.lines unet.postprocess.processor unet.postprocess.utils unet.trainer unet.trainer.evaluator unet.trainer.trainer unet.utils unet.utils.augmentations unet.utils.io unet.utils.labels unet.utils.parameters unet.utils.plots unet.utils.split unet.utils.strings momentum (unet.model.optimizers.Optimizer attribute) N N_ROWS_MAX (in module unet.utils.plots) norm() (unet.postprocess.lines.Point method) O Optimizer (class in unet.model.optimizers) optimizer (unet.trainer.trainer.Trainer attribute) OPTIMIZERS (in module unet.model.optimizers) origin_distance (unet.postprocess.processor.PostProcessor attribute) P p (unet.postprocess.lines.BBox attribute) pixels2coordinates() (in module unet.postprocess.utils) plot() (unet.postprocess.lines.BBox method) plot_batch_output() (in module unet.utils.plots) Point (class in unet.postprocess.lines) poly_points() (unet.postprocess.processor.PostProcessor static method) PostProcessor (class in unet.postprocess.processor) R rad2deg() (in module unet.postprocess.utils) random_split_dataset() (in module unet.utils.split) read_dict() (in module unet.utils.io) read_image() (in module unet.utils.io) read_label_coco() (in module unet.utils.io) read_label_mask() (in module unet.utils.io) read_yaml() (in module unet.utils.io) rel_norm() (unet.postprocess.lines.Point method) resize_geotransform() (in module unet.postprocess.utils) rgb2bgr() (in module unet.postprocess.images) rgb2gray() (in module unet.postprocess.images) rgb2hsv() (in module unet.postprocess.images) run() (unet.postprocess.processor.PostProcessor method) S save() (unet.model.unet.Unet method) save_checkpoint_file (unet.trainer.trainer.Trainer attribute) Scheduler (class in unet.model.optimizers) scheduler (unet.trainer.trainer.Trainer attribute) SCHEDULERS (in module unet.model.optimizers) SegrailsDataset (class in unet.dataset.dataset) show_image() (in module unet.utils.plots) show_image_masks() (in module unet.utils.plots) size_rows_cols() (in module unet.utils.plots) skeletonize() (in module unet.postprocess.images) slope (unet.postprocess.lines.Line attribute) sort_x() (unet.postprocess.lines.Point static method) split() (unet.postprocess.lines.BBox method) start_epoch (unet.trainer.trainer.Trainer attribute) std (unet.model.unet.Unet attribute) step_size (unet.model.optimizers.Scheduler attribute) SUBPLOT_SIZE_MULTIPLIER (in module unet.utils.plots) superpose() (in module unet.postprocess.images) T tensor4plot() (in module unet.utils.plots) test_dataset (unet.trainer.evaluator.Evaluator attribute) tn (unet.model.metrics.Metrics attribute) to_dict() (unet.postprocess.lines.BBox method) tolerance (unet.trainer.trainer.EarlyStopper attribute) tp (unet.model.metrics.Metrics attribute) train() (unet.trainer.trainer.Trainer method) train_config (unet.trainer.trainer.Trainer attribute) train_dataset (unet.trainer.trainer.Trainer attribute) train_parameters() (in module unet.utils.parameters) Trainer (class in unet.trainer.trainer) Transformations (class in unet.utils.augmentations) transforms (unet.dataset.dataset.SegrailsDataset attribute) U unet module Unet (class in unet.model.unet) unet.dataset module unet.dataset.dataset module unet.detection module unet.detection.tools module unet.model module unet.model.losses module unet.model.metrics module unet.model.optimizers module unet.model.unet module unet.postprocess module unet.postprocess.images module unet.postprocess.lines module unet.postprocess.processor module unet.postprocess.utils module unet.trainer module unet.trainer.evaluator module unet.trainer.trainer module unet.utils module unet.utils.augmentations module unet.utils.io module unet.utils.labels module unet.utils.parameters module unet.utils.plots module unet.utils.split module unet.utils.strings module upper_left (unet.postprocess.lines.BBox attribute) upper_right (unet.postprocess.lines.BBox attribute) V valid_contours() (in module unet.postprocess.utils) valid_direction() (in module unet.postprocess.utils) valid_directory() (in module unet.utils.io) validate_dataset (unet.trainer.trainer.Trainer attribute) W w (unet.postprocess.lines.BBox attribute) weight_decay (unet.model.optimizers.Optimizer attribute) write_dict() (in module unet.utils.io) write_label_mask() (in module unet.utils.io) X x (unet.postprocess.lines.Point attribute) Y y (unet.postprocess.lines.Point attribute)